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Abstract 

Land surface temperature (LST) data acquired from satellites are used extensively in studying 

climate variability. Many researchers have used Moderate Resolution Imaging Spectroradiometer 

(MODIS) LST to detect the temperature trend, however, its reliability has not been fully 

investigated. Using in-situ data acquired from 67 stations worldwide, this study examined the 

reliability of the detected temperature trends and investigated the associated influencing factors. 

The high-quality MODIS data have an RMSE of 2.44 K and 3.70 K at nighttime and daytime, 

respectively. However, its trend detection had an RMSE of 0.81 K/decade and 0.98 K/decade at 

nighttime and daytime, respectively. Clear-sky bias, quality control, LST estimation uncertainties, 

trend magnitude, and length of time were factors that influenced the detected trends. Filling cloud-

covered areas in MODIS data may effectively reduce biases in trend detection. 

Index Terms—temperature, trend, MODIS, in-situ measurements. 

 

 

 

 

 

 

 

 

 

 



I. INTRODUCTION 

S reported by the Intergovernmental Panel on Climate Change (IPCC), global average 

temperatures have risen by approximately 1.5 °C since the pre-industrial era [1]. However, climate 

variability research typically relies on near-surface air temperature data, which are conventionally 

obtained from meteorological stations, buoy observations, and climate models. These data sources 

represent sparsely distributed data or simulated values. 

Land surface temperature (LST) is an important parameter for measuring the energy balance at the 

Earth’s surface, which is related to climatic variability [2]. In the past, the lack of long-term LST 

records has hindered the application of satellite LST in climate studies, and only a few studies have 

examined the role of LST datasets in climate variations [3, 4]. However, with the development of 

remote sensing technology, long-term, large-scale, and high-density LST data can be retrieved 

from satellites [5-7], which can help in studying climate variability.  

Among satellite products, the Moderate Resolution Imaging Spectroradiometer (MODIS) LST is 

commonly used, with previous studies reporting a root mean square error (RMSE) value of 0.75-

5.58 K under different scenarios [8]. While many researchers have used MODIS LST products to 

investigate temperature trends [9-11], only a few have evaluated the reliability of these trends.  

Sobrino, et al. [12] found MODIS LST trends at the global scale are very similar to the NOAA’s 

National Climatic Data Center (NOAA-NCDC) air temperature dataset. However, these 

aggregated values on global or reginal scales may mask the underlying complexities at finer scales, 

and it is challenging to precisely identify the exact values at global or reginal scales. In contrast, 

station-scale data have the highest accuracy and are often considered to be the closest 

approximation to the true value. Therefore, assessing the reliability of MODIS LST trends at the 

station scale plays a key role in identifying sources of error in trend detection, improving the 

precision of detected trends, and developing strategies for improve existing datasets.  

A 



Therefore, in-situ data were collected from global field stations with multiple surface types and 

climatic zones to detect the actual multi-year temperature variability and investigate the reliability 

of satellite LST in predicting long-term temperature trends. Furthermore, the influencing factors 

of trends were explored. 

II. SITES AND DATA 

A. Selected Validation Sites 

This study used surface upwelling longwave radiation (LWUP) and downward longwave 

radiation (LWDN) records to calculate in-situ LST and considered 67 sites that met the criteria 

of having records for more than ten years and MODIS LST data available. The 67 sites were 

selected from Surface Radiation Budget Network (SURFRAD) (7) 

(https://gml.noaa.gov/grad/surfrad/) [13, 14], Baseline Surface Radiation Network (BSRN) (10) 

(https://bsrn.awi.de/) [16], FLUXNET (10) (https://fluxnet.org/data/) [15], and AmeriFlux 

network (40) (https://ameriflux.lbl.gov/) [16], providing high-quality LWUP and LWDN 

measurements with a temporal resolution of 1-3 min, 1-60 min, 30 min, and 30 min, respectively. 

The majority of our data is within the 1-30 min range, and the maximum time difference between 

MODIS LST and in-situ measurements was 15 mins. Geolocation of these stations is shown in 

Fig. 1. 
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Fig. 1. Geolocation of stations. 

B. MODIS LST Products 

MODIS instruments on Terra and Aqua satellites provided daytime/nighttime LST observations 

at approximately 10:30 AM/PM and 1:30 AM/PM local time. We used National Aeronautics and 

Space Administration (NASA)'s Application for Extracting and Exploring Analysis Ready 

Samples (AρρEEARS) tool (https://appeears.earthdatacloud.nasa.gov/) [17] to download and 

process the commonly used daily level-3 1-km MOD11A1 LST product (Version 006) for the 

study period from January 1, 2003, to December 31, 2020.  

The LST, QC, and view time layers from the daily LST products were used. LST data were 

generated by the split-window technique [18, 19]. The QC information was used to identify 

clear/cloudy conditions: since thermal infrared (TIR) radiation cannot penetrate clouds to obtain 

LST data under the clouds, a clear sky was defined when the MODIS pixels were valid values, 



while other cases were defined as a cloudy sky. Furthermore, the QC information was used to 

identify data quality: pixels labeled “LST produced, good quality, not necessary to examine more 

detailed QA” were selected as high-quality (HQ) data, while other pixels with valid values were 

identified as low-quality data. Additionally, the view time information from the daily LST products 

was used to match the in-situ data. 

C. In-situ Measurements 

The in-situ LST was calculated using LWUP and LWDN based on Stefan-Boltzmann theory as 

follows:  

Ts =  [
F↑−(1−εb)F↓

σεb
]

1/4

 (1) 

where Ts is the LST, F↑ and F↓are LWUP and LWDN, respectively, εb is the surface broadband 

emissivity (BBE), and σ is the Stefan-Boltzmann constant (5.67 × 10−8 Wm−2K−4). Here, εb 

was obtained from the 8-day GLASS BBE product (http://www.glass.umd.edu/BBE/AVHRR/) 

[20, 21], and algorithm details are available at http://www.glass.umd.edu/introduction.html. The 

in-situ data that corresponded to all MODIS LST and HQ MODIS LST were designated as the 

clear-sky in-situ data and HQ in-situ data, respectively. 

III. RESULTS 

In this study, trends were determined in the form of least square line fitting, and the decade trend 

was used. We focused on HQ MODIS data since LST trends are mostly calculated using HQ 

MODIS data [9-11]. 

To assess the accuracy of HQ MODIS data, we compared it to in-situ measurements with a time 

difference less than half the in-situ data’s temporal resolution. We calculated RMSE separately for 

daytime and nighttime data: 

http://www.glass.umd.edu/introduction.html


RMSE = √∑ (x̂i−xi)2N
i=1

N
  (2) 

where i represents variable i, x̂i represents the HQ MODIS time series, xi represents the in-situ 

measurements time series, and N represents the total number of available data points. 

Nighttime and daytime HQ MODIS LST data have RMSEs of 2.44 K and 3.70 K (Fig. 2(a)), which 

are comparable to the RMSEs of 0.75-5.58 K in a previous study [8].  

For trend analysis, we compared the trends derived from HQ MODIS data with those from all-sky 

in-situ measurements. Table 1 presents the average values and standard deviations (STDs) of all 

trends. The RMSE for trend detection was computed separately for daytime and nighttime data: 

RMSE = √∑ (ŷi−yi)2M
i=1

M
  (3) 

where i represents variable i, ŷi represents the trend calculated from HQ MODIS data series, yi 

represents the trend calculated from all-sky in-situ measurements series, and M represents the total 

number of available data points.  

 



Fig. 2. Data comparison. (a) Comparison of high-quality (HQ) MODIS LST and in-situ LST; 

and (b) Trend differences between HQ MODIS LST and all-sky in-situ LST.  

 

The trends of nighttime and daytime HQ MODIS LST have RMSEs of 0.81 K/decade and 0.98 

K/decade compared with all-sky in-situ LST trends (Fig. 2(b)). This indicates that the trend 

detected from HQ MODIS LST may differ from the actual all-weather LST trend. We explored 

the factors that influence trends in the next section. 

Table 1. The means and standard deviations (STDs) of the trends. 

Trends 

(K/decade) 

Nighttime Daytime 

Mean STD Mean STD 

HQ MODIS LST 0.37 0.53 0.14 0.66 

All-sky in-situ LST 0.26 0.63 0.31 0.82 

Clear-sky in-situ LST 0.28 0.64 0.28 0.84 

MODIS LST 0.36 0.46 0.12 0.61 

 

IV. DISCUSSION 

We explored various influencing factors that may affect the accuracy of LST trends, including 

clear-sky bias of data, QC procedure, trend magnitude, LST error, and data length. To assess the 

effects of the clear-sky bias and the QC procedure on the calculated trends, we used in-situ LST 

data. For other factors, we utilized simulated data. 



 

A. Clear-sky Bias 

One factor that can impact the accuracy of LST trends is the clear-sky bias. MODIS, as a TIR 

sensor, can only measure data under clear-sky conditions, which may not be representative of the 

climatological mean states and may exhibit clear-sky bias issues [22]. Clear-sky bias refers to the 

difference between clear‐sky LSTs and all‐weather LSTs [23]. In this study, we discussed the 

effects of clear-sky bias on the accuracy of LST trends using in-situ data. 

Fig. 3. Trend comparison. (a) Trend difference between clear-sky in-situ LST and all-sky in-situ 

LST; and (b) Trend difference between MODIS LST/ high-quality (HQ) MODIS LST and clear-

sky in-situ LST. 



The trends of nighttime and daytime clear-sky in-situ LSTs showed RMSEs of 0.26 K/decade and 

0.24 K/decade, respectively, when compared with the trends detected by the all-sky in-situ LSTs 

(Fig. 3(a)). This indicates that the clear-sky bias of data led to errors in calculated LST trends. 

B. Quality Control 

Previous studies have utilized HQ MODIS data selected through the QC procedure [9-11], which 

may influence the detected trends. In this section, the effects of the QC procedure on the accuracy 

of LST trends have been discussed. 

To distinguish the impacts of the QC procedure from the impacts of the clear-sky bias, we 

compared the trends detected by clear-sky in-situ data with those detected by HQ MODIS data. 

Compared with the trends detected by clear-sky in-situ LSTs, the trends of nighttime and daytime 

MODIS LSTs exhibited RMSEs of 0.69 K/decade and 0.99 K/decade, respectively (The first row 

in Fig. 3(b)). In contrast, the trends of nighttime and daytime HQ MODIS LSTs showed RMSEs 

of 0.73 K/decade and 1.02 K/decade, respectively (The second row in Fig. 3(b)). This indicates 

that the accuracy of the trends detected by MODIS LSTs was slightly higher than the accuracy of 

the trends detected by HQ MODIS LSTs (0.04 K/decade and 0.03 K/decade for nighttime and 

daytime, respectively). Therefore, the QC procedure also contributed to errors in calculated LST 

trends.  

One possible reason for this observation is that the QC procedure misses a significant amount of 

available data. After the QC procedure, the ratio of available daytime and nighttime MODIS LSTs 

was reduced by 44.30% and 39.9%, respectively.  

C. LST Error 

We explored the impact of LST error on the calculated trends using a simulation experiment that 

isolated its effects from clear-sky bias and QC procedure. We assumed that the LST and its errors 



are normally distributed. While assuming a uniform error distribution simplifies some aspects of 

data analysis, it’s essential to recognize that it may oversimplify the complexity of error patterns 

and may not adequately represent the behavior of errors during extreme events.  

We generated error-free simulated data by setting mean (282.52 K), STD (9.73 K), and trend (0.94 

K/decade) based on all-sky in-situ LST data, and then generated simulated data with errors by 

adding error arrays with the mean (0 K) and STD (0 K to 10 K, in 0.25 K intervals). For each LST 

error, we randomly generated 10,000 error arrays. The trend of the simulated data with and without 

errors was calculated. Their RMSE, percentage of trends with different signs, and percentage of 

trend difference were shown in Fig. 4(a).  

The RMSE between error-free and error-containing data increased with increasing LST errors, 

reaching about 0.35 K/decade and 0.50 K/decade when the LST error was 2.44 K and 3.75 K (the 

RMSE of nighttime and daytime HQ MODIS LST). Moreover, the percentage of the trend for 

different signs increased with increasing LST errors starting from an LST error of about 2.50 K. 

These results indicated that the LST error contributed to the error in detected trends, and as the 

LST error increased, the accuracy of the trend decreased. 

D. Trend Magnitude 

We investigated the error tolerance on arrays with different trend magnitudes by introducing the 

same errors. We generated simulated data with fixed trend magnitudes ranging from −1.50 

K/decade to 1.50 K/decade, and then generated simulated data with errors by adding error arrays 

with STD of 2.50 K. In this process, 10,000 error arrays were generated. The trend of the simulated 

data with and without error was calculated. Their RMSE, percentage of trends with different signs, 

and percentage of trend difference were shown in Fig. 4(b).  

The RMSE showed a random variation with the trend magnitude, and the percentage of trends 



with different signs decreased as the absolute value of the trend magnitude increased until an 

absolute value of 1.00 K/decade was reached. Additionally, the percentage of trend difference was 

almost constant for different trend magnitudes. Therefore, error tolerance is weaker for smaller 

trend magnitudes, and large trend magnitudes in the data make it easier to maintain the sign of the 

trend. 

E. Length of Time  

(a) 

 



 (b)              

(c)  

Fig 4. The statistical matrix of errors caused by: (a) LST errors (LST Err); (b) Trend magnitude; 

(c) Year number. 

 

To explore the effect of time on temperature trends, 10,000 complete 17-year simulated datasets 

were randomly generated by setting their mean (282.52 K), STD (9.73 K), and trend (0.94 

K/decade). To obtain shorter time periods, some data at the beginning of the matrix were 



subtracted. Temperature trends were computed for both the 17-year and shorter time periods, and 

their RMSE, percentage of trends with different signs, and percentage of trend difference were 

depicted in Fig. 4(c).  

The RMSE increased with decreasing number of years and the RMSE was < 0.10 K/decade when 

the data length was > 10 years. The percentage of the trend for different signs increased with 

decreasing number of years starting from 14 years. Additionally, a trend difference of > 0.10 

K/decade was observed when the data length was < 15 years. The results indicated that a decrease 

in the time period led to a decrease in trend accuracy. 

V. CONCLUSION 

This study evaluated the reliability of long-term, large-scale, high-density spatially sampled 

MODIS data in capturing the temporal variability of LST, using in-situ data collected from 67 

stations worldwide with multiple surface types and climatic zones. 

The HQ MODIS data showed high accuracy, with nighttime and daytime RMSE values of 2.44 K 

and 3.70 K, respectively. However, its trend was not sufficiently accurate to indicate multi-year 

variations in actual all-sky LSTs, with nighttime and daytime RMSE values of 0.81 K/decade and 

0.98 K/decade, respectively. 

The study also identified several factors that affected the detected trends: 1) The clear-sky bias led 

to an RMSE of 0.26 K/decade and 0.24 K/decade for the nighttime and daytime trends, 

respectively. 2) The QC procedure led to an RMSE of 0.04 K/decade and 0.03 K/decade RMSE 

for the nighttime and daytime trends, respectively. 3) The LST error led to an RMSE of 0.35 

K/decade and 0.50 K/decade for the nighttime and daytime trends, respectively. 4) Larger trend 

magnitudes in the data made it easier to maintain the sign of the trend. 5) When the data length 

was less than 15 years, a trend difference greater than 0.10 K/decade was observed. This analysis 



will help users understand the sources of errors in detecting trends using MODIS LST data. By 

understanding these sources of error, users can make more informed decisions about how to use 

MODIS LST data for trend analysis. For instance, they can employ established fusion methods [6, 

24-26] to effectively fill cloud-covered areas in MODIS data, thereby reducing biases in trend 

detection effectively.  

However, despite our efforts to choose in-situ LST data that closely match with MODIS data in 

time, in-situ measurements with higher temporal resolutions are still limited. In future studies, we 

will incorporate more in-situ data with higher temporal resolution to improve accuracy. 
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